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Abstract. The effect of the radiation reaction on the motion of an extended classical charged 
particle in a magnetic field is investigated. The expression of the self-torque is obtained 
and it is shown that there are radiationless self-sustained oscillations but no runaways. An 
application is made to the Hydrogen atom. 

1. Introduction 

The evolution of a particle with spin in a magnetic field is frequently assumed to be 
a completely solved problem, not only in classical physics but also in quantum 
mechanics, where it is relevant to the understanding of atomic structure. However, 
this is not at all the case if the effect of the radiation emitted by the particle and the 
corresponding reaction are taken into account. In another paper (Rafiada and Rafiada 
1979) the corrections to the Larmor precession due to the emission of electromagnetic 
field were studied in the case of a classical charged particle. Because of the importance 
of the problem it seems convenient to extend that study in order to include the effect 
of the form of the particle. This is the purpose of this paper. 

In 9 2 we study the self-torque on a spherical magnetic top. In 9 3 we show that 
there are self-oscillations but no runaways. In 9 4 we obtain the self-torque in the limit 
of a point charge, finally in 9 5 we consider the case of the Hydrogen atom, which we 
study as a classical system by taking the c-number approximation of the spinor 
wavefunctions. 

2. Expression of the electromagnetic self-torque 

Let us consider a spherical magnetic top (Goldstein 1951), by which we mean a rigid 
body with spherically symmetric mass and charge densities and without magnetic 
moment when at rest. Let its electric form factor be 

G(k) = p ( r )  e-ikr d3r 

where p is the charge density. If the top is rotating with angular velocity o(t) in an 
exterior magnetic field, the radiation reaction will affect its motion by exerting a 
self-torque, which we will calculate in this section. The current density is 

(2) 
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j ( r ,  t ) = p ( r ) o ( t ) x r .  
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Let us consider the electromagnetic field in the Coulomb gauge (Jackson 1966) 

A 4  = -4 T P  A = -(4 TI c)j. (3) 

By performing the standard Fourier expansion of (3) (Jackson 1966, Bohm and 
Weinstein 1948), it is very easy to find the radiated field 

2 d sin kr 
A( r, t )  = - lox d r  w (  t - r )  x r loa d k (g) sin c k r z  (7) , 

T 

Oselr = Iom [ U (  t )  x a( t - r )  - 

where 

K ( r )  = 4  loK kG"sin ckr dk. 
3 T C  

(4) 

As Oselr is minus the time derivative of the electromagnetic spin, the evolution equation 
for the mechanical spin S is 

d S l d t  = O s e l f + O e x t  (7 )  

where O,,, is due to the external magnetic field. As our top is classical we can write 
S = Zw, where I is the mechanical moment of inertia. 

It should be stressed that, as far as the spherical charge is rigid, ( 5 )  is an exact 
consequence of electrodynamics, presupposing no restriction on either angular velocity 
or acceleration. 

3. Self-oscillations and non-existence of runaways 

A curious property of equation (7) is the existence of oscillatory solutions, even in the 
absence of an external torque. They represent harmonic motions in which the direction 
of w remains constant, while its modulus varies sinusoidally with time, the energy 
going back and forth between the top and the electromagnetic field. Since the work 
done over a period is zero, these oscillations are self-sustained. Similar motions were 
considered by Sommerfeld (1905) in a spherical shell model of the electron (Schott 
1933, Erber 1961). 

Inserting w = wo e-iA' in (7) we obtain the conditions for the existence of these 
self-oscillations 

dG/dk  = 0, k = h / c  (9a) 

The spectrum of frequencies at which the system can oscillate without radiation thus 
depends strongly on the shape of the charge. As an example, let us consider the case 
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of a spherical shell which has density p =(e /4m2)6(r -a ) .  In this case G(k)= 
e(sin ka)/ ka. The condition (9a) for self-oscillation is 

tan Aa/c = Aa/c 

and the solutions are possible only when I = 0. 
An attractive feature of equation (7) is the absence of runaway solutions of the 

form S = So eAr, A real, which often appear in problems of this kind. By inserting this 
expression in (7) we obtain 

I=-- 3T [oXIdkA2+c2k2 Ck2 ("3' dk 
which is impossible since the mechanical moment of inertia I cannot be negative. 

4. The self-torque in the limit of a point charge 

Let us consider the behaviour of Oself when the radius a of the charge goes to zero. 
In order to do this we develop ( 5 )  in series as follows 

XI 

Oself= C A,(o(t) x u(")(t) - W ( " + ' ) ( t ) )  
n = O  

where 

Since we are considering spherical distributions of charge of radius a 

p(r) = 0 r >  a. (13) 

The expansion (1 1) is well defined because in this case 

K ( r ) = O  for T >  2a/c. (14) 

This can be checked by considering the definition of K ( T ) .  
The coefficients A, depend on what charge distribution p(r) we have, this is also 

reflected in the limit a+0 .  We consider two cases as a manifestation of the non- 
uniqueness of the point-like limit. 

(a) Spherical shell 

pe(r) = (e/4.rra2)6(r - a )  G(k) = e(sin ka)/ ka 

In this way 

(- l ) n , n + I  (1 - n )  e2an+l  A, = 
3n!  ( n + l ) ( n + 3 )  cn+' ' 

If we suppose a mass density p,(r) = (m/4.rra2)6(r - a ) .  The corresponding 
mechanical moment of inertia is I = $ma2. 
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(b) Uniform sphere 

r s a  
r > a  p , (r>  = { i e ' 4 r a 3  G(k)  = [ 3 e / ( k ~ z ) ~ ]  (sin ka - ka cos ka) 

K ( T )  = ( e 2 / 3 c ) ( c 7 / a ) [ f  - - f c ~ / a  + $ ( c ~ / a ) ~  - & c T / ~ ) ~ ] .  

We obtain 
e 2 a n + l  

(- 1 ) n 2 n + ~  (1 - n >  A,  = 
3 n !  ( n  +2)(n  +3)(n  +5)(n  +7) cn+' ' 

Considering a mass density 

the corresponding mechanical moment of inertia is 
2 2  I = 3 m a .  

By introducing the spin in equation (1 l), we get 

" A  " A  
Osslf= c +(f) xS'"'(t)-  L S ( " + I ) ( f ) .  

n = o  I n = o  I 

With the above expressions we obtain, when a += 0, 
Spherical shell: 

Uniform sphere: 

In both cases the linear terms for n > 0 and the non-linear terms for n > 3 are zero 
when a += 0. On the other hand there are two terms which become infinite ( - a - ' )  while 
a non-linear term is independent of a. That means we have to consider three terms 
for charges which are highly localised. 

The above expressions of Oself are different from those obtained by Rariada and 
Rariada (1979). The reason is the following. In the 1979 paper the self-torque was 
obtained as the flux of the angular momentum density tensor through a sphere of 
radius r - a .  It included, therefore, the contribution of the near zone and was not 
identical to the self-torque on the mechanical part of the particle. The fact that equation 
(7) does not admit runaway solutions suggests that their existence is related to the 
inclusion of terms which are due to storage of angular momentum in the near zone. 
This is a very interesting question which will be discussed in another paper. 

5. An application to the Hydrogen atom 

In the preceding sections we have considered the electromagnetic self-torque in the 
case of an extended rigid charge. We will now apply the same ideas to the Hydrogen 
atom. This may seem strange, since it is clearly a very different system. However, as 
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a first approximation we can treat the Dirac wavefunctions as c-number fields (Rafiada 
1977, Raiiada and Us6n 1980, 1981) and study the evolution of the corresponding 
charge and magnetic moment densities. Although we are thus considering a classical 
field theory, the results and relation which can be obtained may be useful in the study 
of the problems which appear in the correct quantum theory. 

Let us consider a Hydrogen atom in its ground state. Ifs, = ih,  the spinor wavefunc- 
tion is (Bethe and Salpeter 1957) 

If the spin is directed along the unit vector n =(sin p cos a, sin p sin a, cos p), the 
charge and current densities are 

p = (e/hc)G++ = ( e / 4 d c ) (  f 2  +g’) 

j = (e/h)JyJI = -(e/4&)(2fg/r)n x r. (216) 

We assume that, if the atom is submitted to an external magnetic field, the angles a 
and p vary but its internal structure is not modified or, in other words, that it behaves 
as a rigid body. This is clearly a very safe assumption, except for very large values of 
B. Proceeding as in 0 2, we can deduce from (3) and (21) the value of the self-torque, 
which turns out to be 

dn 
d t  

OEel f=  loa ( n ( t )  X n ( t -  T)A(T)---(~ - T)B(T)  

where 

A(T)  =-!- joE dk kH” sin ckT, B( T) = lom d k kH’G‘ sin ckT 
3 T C  3 T C  

G being given as before by (1 )  and H being the magnetic form factor 

In order to estimate A and B, we may use the non-relativistic approximation 

g = 2(hc/r3”’ e-r/ro, f = +fQg 

where a is the fine structure constant and ro the Bohr radius. We thus obtain 

A(T)=  (a’e’c /36r~)v(v2+3v-69)e-”  

B ( T )  = (1  ++a’)(ae’/ 16r0)(8 - 15v + 15v2- - fv3  +4v4)e-” 

where v = 2c7/rO. The main difference between (5) and (22) is that the latter makes 
use, instead of only one, of two different delay functions related to the electric and 
magnetic effects. It must be noted that if the charge occupies a finite volume and can 
be contained in a sphere of radius R, the functions A and B vanish for T > 2R/c. In 
general they decrease at infinity. 

It must also be pointed out that (22) has neither self-oscillations nor runaway 
solutions. 
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Let us finally mention that it is possible to develop (22) in series as 
m 

O s e l f = x  (&l(f) x n k ( f ) - B k n k + ' ( f ) )  
0 

(27) 

where 

n ( k )  is the kth derivative of n and the expansion parameter is a time which characterises 
the average delay in (7). 
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